TensorFlow笔记1-4-时间序列数据建模流程范例
文章内容源于https://github.com/lyhue1991/eat_tensorflow2_in_30_days,能力有限,未做太多修改,未来会加入自己的理解。
模型有问题,且运行结果与教程不同,待熟悉后再来验证
本篇文章将利用TensorFlow2.0建立时间序列RNN模型,对国内的新冠肺炎疫情结束时间进行预测。
一、准备数据
本文的数据集取自tushare,获取该数据集的方法参考了以下文章。
《https://zhuanlan.zhihu.com/p/109556102》
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import models,layers,losses,metrics,callbacks
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
df = pd.read_csv("./data/covid-19.csv",sep = "\t")
df.plot(x = "date",y = ["confirmed_num","cured_num","dead_num"],figsize=(10,6))
plt.xticks(rotation=60)
dfdata = df.set_index("date")
dfdiff = dfdata.diff(periods=1).dropna()
dfdiff = dfdiff.reset_index("date")
dfdiff.plot(x = "date",y = ["confirmed_num","cured_num","dead_num"],figsize=(10,6))
plt.xticks(rotation=60)
dfdiff = dfdiff.drop("date",axis = 1).astype("float32")
#用某日前8天窗口数据作为输入预测该日数据
WINDOW_SIZE = 8
def batch_dataset(dataset):
dataset_batched = dataset.batch(WINDOW_SIZE,drop_remainder=True)
return dataset_batched
ds_data = tf.data.Dataset.from_tensor_slices(tf.constant(dfdiff.values,dtype = tf.float32)) \
.window(WINDOW_SIZE,shift=1).flat_map(batch_dataset)
ds_label = tf.data.Dataset.from_tensor_slices(
tf.constant(dfdiff.values[WINDOW_SIZE:],dtype = tf.float32))
#数据较小,可以将全部训练数据放入到一个batch中,提升性能
ds_train = tf.data.Dataset.zip((ds_data,ds_label)).batch(38).cache()
二、定义模型
使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。
此处选择使用函数式API构建任意结构模型。
#考虑到新增确诊,新增治愈,新增死亡人数数据不可能小于0,设计如下结构
class Block(layers.Layer):
def __init__(self, **kwargs):
super(Block, self).__init__(**kwargs)
def call(self, x_input,x):
x_out = tf.maximum((1+x)*x_input[:,-1,:],0.0)
return x_out
def get_config(self):
config = super(Block, self).get_config()
return config
tf.keras.backend.clear_session()
x_input = layers.Input(shape = (None,3),dtype = tf.float32)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x_input)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x)
x = layers.LSTM(3,input_shape=(None,3))(x)
x = layers.Dense(3)(x)
#考虑到新增确诊,新增治愈,新增死亡人数数据不可能小于0,设计如下结构
#x = tf.maximum((1+x)*x_input[:,-1,:],0.0)
x = Block()(x_input,x)
model = models.Model(inputs = [x_input],outputs = [x])
model.summary()
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, None, 3)] 0
_________________________________________________________________
lstm (LSTM) (None, None, 3) 84
_________________________________________________________________
lstm_1 (LSTM) (None, None, 3) 84
_________________________________________________________________
lstm_2 (LSTM) (None, None, 3) 84
_________________________________________________________________
lstm_3 (LSTM) (None, 3) 84
_________________________________________________________________
dense (Dense) (None, 3) 12
_________________________________________________________________
block (Block) (None, 3) 0
=================================================================
Total params: 348
Trainable params: 348
Non-trainable params: 0
_________________________________________________________________
三、训练模型
训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法。
注:循环神经网络调试较为困难,需要设置多个不同的学习率多次尝试,以取得较好的效果。
#自定义损失函数,考虑平方差和预测目标的比值
class MSPE(losses.Loss):
def call(self,y_true,y_pred):
err_percent = (y_true - y_pred)**2/(tf.maximum(y_true**2,1e-7))
mean_err_percent = tf.reduce_mean(err_percent)
return mean_err_percent
def get_config(self):
config = super(MSPE, self).get_config()
return config
import os
import datetime
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
model.compile(optimizer=optimizer,loss=MSPE(name = "MSPE"))
stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
logdir = os.path.join('data', 'autograph', stamp)
## 在 Python3 下建议使用 pathlib 修正各操作系统的路径
# from pathlib import Path
# stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
# logdir = str(Path('./data/autograph/' + stamp))
tb_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
#如果loss在100个epoch后没有提升,学习率减半。
lr_callback = tf.keras.callbacks.ReduceLROnPlateau(monitor="loss",factor = 0.5, patience = 100)
#当loss在200个epoch后没有提升,则提前终止训练。
stop_callback = tf.keras.callbacks.EarlyStopping(monitor = "loss", patience= 200)
callbacks_list = [tb_callback,lr_callback,stop_callback]
history = model.fit(ds_train,epochs=500,callbacks = callbacks_list)
......
Epoch 492/500
1/1 [==============================] - 0s 54ms/step - loss: 0.0860
Epoch 493/500
1/1 [==============================] - 0s 51ms/step - loss: 0.0859
Epoch 494/500
1/1 [==============================] - 0s 54ms/step - loss: 0.0860
Epoch 495/500
1/1 [==============================] - 0s 50ms/step - loss: 0.0858
Epoch 496/500
1/1 [==============================] - 0s 69ms/step - loss: 0.0859
Epoch 497/500
1/1 [==============================] - 0s 63ms/step - loss: 0.0857
Epoch 498/500
1/1 [==============================] - 0s 56ms/step - loss: 0.0858
Epoch 499/500
1/1 [==============================] - 0s 54ms/step - loss: 0.0857
Epoch 500/500
1/1 [==============================] - 0s 57ms/step - loss: 0.0858
四、评估模型
评估模型一般要设置验证集或者测试集,由于此例数据较少,我们仅仅可视化损失函数在训练集上的迭代情况。
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
def plot_metric(history, metric):
train_metrics = history.history[metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.title('Training '+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric])
plt.show()
plot_metric(history,"loss")
五、使用模型
此处我们使用模型预测疫情结束时间,即 新增确诊病例为0 的时间。
#使用dfresult记录现有数据以及此后预测的疫情数据
dfresult = dfdiff[["confirmed_num","cured_num","dead_num"]].copy()
dfresult.tail()
#预测此后100天的新增走势,将其结果添加到dfresult中
for i in range(200):
arr_predict = model.predict(tf.constant(tf.expand_dims(dfresult.values[-38:,:],axis = 0)))
dfpredict = pd.DataFrame(tf.cast(tf.floor(arr_predict),tf.float32).numpy(),
columns = dfresult.columns)
dfresult = dfresult.append(dfpredict,ignore_index=True)
dfresult.query("confirmed_num==0").head()
# 第55天开始新增确诊降为0,第45天对应3月10日,也就是10天后,即预计3月20日新增确诊降为0
# 注:该预测偏乐观
dfresult.query("dead_num==0").head()
dfresult
dfresult.query("cured_num==0").head()
# 第164天开始新增治愈降为0,第45天对应3月10日,也就是大概4个月后,即7月10日左右全部治愈。
# 注: 该预测偏悲观,并且存在问题,如果将每天新增治愈人数加起来,将超过累计确诊人数。
dfresult.query("dead_num==0").head()
# 第60天开始,新增死亡降为0,第45天对应3月10日,也就是大概15天后,即20200325
# 该预测较为合理
六、保存模型
推荐使用TensorFlow原生方式保存模型。
model.save('./data/tf_model_savedmodel', save_format="tf")
print('export saved model.')
model_loaded = tf.keras.models.load_model('./data/tf_model_savedmodel',compile=False)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
model_loaded.compile(optimizer=optimizer,loss=MSPE(name = "MSPE"))
model_loaded.predict(ds_train)
评论